JJApe, please use the CN to post your nonsense.

The fifth zeta zero, to three decimal places accuracy, using only the five elements subdivision applied to both zeta functions as a guide.

63.636363

16.1773

9.5445

6.36363

3.1815

https://www.theflatearthsociety.org/forum/index.php?topic=30499.msg2006301#msg2006301 (basic subdivision of the first 63.63636 sacred cubit interval into five elements ratios)

16.1773 + 2.373 = 32.685

4.7459 - 2.373 = 2.373

2.373

0.6033

0.356

0.2373

0.118645

Adding to the bottom four values to 32.685:

33.2883

33.041

32.9223

32.8036

1.968

31.8494

0.984

32.8294

6.7106

33.8

32.8294 is the first lower bound.

Since 32.9223 is a higher lower bound, this value is the lower bound of the entire approximation.

To find the first upper bound, we need to subdivide the intervals for the second zeta function further, in order to find a lower upper bound than 33.041.

0.98422

0.25023

33.8 - 0.25023 = 33.55

0.98422 - 0.25023 = 0.734

0.734

0.18661

33.55 - 0.18661 = 33.364

0.734 - 0.18661 = 0.5474

0.5474

0.139171

33.364 - 0.139171 = 33.225

0.5474 - 0.139171 = 0.40823

0.40823

0.103788

33.225 - 0.103788 = 33.1212

0.40823 - 0.103788 = 0.304442

0.304442

0.0774

33.1212 - 0.0774 = 33.0438

0.304442 - 0.0774 = 0.227042

0.227042

0.05772

33.0438 - 0.05772 = 32.9861

32.9861 is the new upper bound of the entire approximation.

0.356 - 0.23729 = 0.11871

0.11871

0.0302

0.01781

0.011871

0.0059355

Adding the bottom four values to 32.9223:

32.9525

32.9401

32.9342

32.928

32.9401 is the new upper bound.

Returning to the subdivisions for the second zeta function.

0.227042 - 0.05772 = 0.16932

0.16932

0.04305

32.9861 - 0.04305 = 32.94305

0.16932 - 0.04305 = 0.12627

0.12627

0.0321

0.01894

0.012627

0.0063135

Substracting the bottom four values from 32.94305:

32.911

32.9241

32.9304

32.93673

32.93672 is the new upper bound.

0.012627 - 0.0063135 = 0.0063135

0.0063135

0.0016052

0.000947

0.00063135

0.000315675

Substracting the bottom four values from 32.93673:

32.935125

32.935783

32.9361

32.936414

Returning to the subdivisions for the first zeta function.

0.01781 - 0.011871 = 0.0059355

0.0059355

0.001509

0.000891

0.00059355

0.000297

Adding the bottom four values to 32.9342:

32.93571

32.935091

32.9348

32.9345

Since 32.935091 is a lower value than 32.935125, this figure is the new upper bound of the entire approximation.

0.0063135 - 0.0016052 = 0.0047083

0.0047083

0.00119704

0.000706245

0.00047083

0.000235415

Substracting the last figure from 32.935125 we obtain 32.93489.

Since this is greater value than 32.9348, it becomes the new lower bound of the entire approximation.

This is further proof that 32.935125 was an upper bound, and that 32.935091 is the new upper bound for the entire approximation.

The true value for the fifth zeta zero is:

32.935061588

Already we have obtained a five digit/three decimal place approximation:

32.935091

Further subdivisions for greater accuracy.

0.00047083 - 0.000235415 = 0.000235415

0.000235415

0.000059852

0.0000353

0.0000235415

0.000011771

Substracting the bottom four values from 32.935125:

32.935065

32.935089

32.935101

32.935113

Returning to the subdivisions for the first zeta function.

0.000891 - 0.00029745 = 0.00029745

0.00029745

0.000075624

32.9348 + 0.000075624 = 32.9348756

0.00029745 - 0.000075624 = 0.000221826

0.000221826

0.0000564

32.9348756 + 0.0000564 = 32.93492

0.000165426

0.000042055

32.93492 + 0.000042055 = 32.934962

0.00012337

0.000031366

32.934962 + 0.000031366 = 32.9349934

0.000092334

0.000023475

32.9349934 + 0.000023475 = 32.93501688

0.000068859

0.0000175067

32.93501688 + 0.0000175067 = 32.9350344

0.000051353

0.000013056

32.9350344 + 0.000013056 = 32.93504746

0.000038297

0.00000973663

32.93504746 + 0.00000973663 = 32.9350572

0.000028561

0.00000726135

32.9350572 + 0.00000726135 = 32.93506446

This becomes the new upper bound of the entire approximation (a value smaller than 32.935065 obtained from the second zeta function subdivision).

0.000028561

0.00000726135

0.00000428415

32.9350572 + 0.00000428415 = 32.93506148

The true value for the fifth zeta zero is:

32.935061588

Already we have obtained an eight digit/six decimal place accuracy:

32.93506148

You are no mathematician.

If you were, you'd realize that it is IMPOSSIBLE to obtain this accuracy if I did not have an algorithm.