The weight of the brick should therefore be different, depending on the top surface area.
No, it shouldn't. Scepti's point makes sense, if you think of it in terms of essentially inverse-buoyancy. Volume matters more than area.
If we're looking at the human pyramid effect then the surface area seems pretty important. Maybe inverse-buoyancy factors into it but that sounds like a different effect.
Scepti made a point of describing the air like a blanket but the problem with that analogy is that air molecules aren't connected.
Air molecules are connected. Everything is connected. There is no free space, ever.
There are no random particles like people are told are in space. That's basically nonsense and should be seen for that.
Interesting. So in your view, what exactly is happening when a vacuum chamber is being evacuated?
The external atmosphere is pushed away which allows the atmosphere inside the chamber to expand into the lower pressure created by that pump push.
All molecules are under pressure and under different friction/agitation dependent on energy applied. (we won't go into this part because it will just get confusing).
Basically molecules expand against each other and the more there is, the less they can expand against each other, unless they are allowed to do so by a force that gives them freedom to expand.
A pump attached to a chamber will turn equilibrium of pressure externally and internally into added pressure externally due to the pump pushing back the atmosphere to allow the expansion of molecules to take their place in that external atmosphere. And this amount adds extra pressure onto the chamber that is also weakened by the expansion of molecules inside.
A simple analogy is to imagine a container full of sponge balls that is sat in the middle of another massive container of sponge balls.
Ok, the sponge balls inside the container are stopping the container from being crushed because they are compressed in that chamber again st the compression of sponge balls out of that container.
From this point on if you picture the sponge ball, you can see that there is no free space. Just sponge balls compressed into each other.
Add energy like a pump and push sponge balls away from the container, it compresses them more externally but leaves the sponge balls inside the container to decompress a little, allowing some to take their place externally, meaning there are less sponge balls inside the container but more added externally from that container to now take their place as added external pressure against it, assuming we seal the exit from this point.
This is your so called vacuum but as you can see - or imagine - it's nothing of the sort and is only a lower internal pressure but still full of sponge balls that are still all attached, only less compressed.
This is why you can never evacuate a chamber - ever.
You could only evacuate enough (assuming the strongest container, ever and the strongest every pump) until all of the molecules inside cease to vibrate under pressure or change of pressure. This is when you would have no more expansion of molecules onto molecules to create anymore push out of the container.
I think a few will get this. Maybe you will.