We can have a separate discussion for the three different stellar orbits (southern/northern circumpolar and regular).
Let us now explore further the myths about the moon which relate to our discussion (which, of course, the enquiring minds that want to know belonging to knowledge and thinking amoeba do accept without a question).
The Moon and the Sun could not have attained a spherical shape in the first place. Here is a brief, exceptional demonstration.
The atmospheric pressure of the sun, instead of being 27.47 times greater than the atmospheric pressure of the earth (as expected because of the gravitational pull of the large solar mass), is much smaller: the pressure there varies according to the layers of the atmosphere from one-tenth to one-thousandth of the barometric pressure on the earth; at the base of the reversing layer the pressure is 0.005 of the atmospheric pressure at sea level on the earth; in the sunspots, the pressure drops to one ten-thousandth of the pressure on the earth.
The pressure of light is sometimes referred to as to explain the low atmospheric pressure on the sun. At the surface of the sun, the pressure of light must be 2.75 milligrams per square centimeter; a cubic centimeter of one gram weight at the surface of the earth would weigh 27.47 grams at the surface of the sun. Thus the attraction by the solar mass is 10,000 times greater than the repulsion of the solar light. Recourse is taken to the supposition that if the pull and the pressure are calculated for very small masses, the pressure exceeds the pull, one acting in proportion to the surface, the other in proportion to the volume. But if this is so, why is the lowest pressure of the solar atmosphere observed over the sunspots where the light pressure is least?
Because of its swift rotation, the gaseous sun should have the latitudinal axis greater than the longitudinal, but it does not have it. The sun is one million times larger than the earth, and its day is but twenty-six times longer than the terrestrial day; the swiftness of its rotation at its equator is over 125 km. per minute; at the poles, the velocity approaches zero. Yet the solar disk is not oval but round: the majority of observers even find a small excess in the longitudinal axis of the sun. The planets act in the same manner as the rotation of the sun, imposing a latitudinal pull on the luminary.
Gravitation that acts in all directions equally leaves unexplained the spherical shape of the sun. As we saw in the preceding section, the gases of the solar atmosphere are not under a strong pressure, but under a very weak one. Therefore, the computation, according to which the ellipsoidity of the sun, that is lacking, should be slight, is not correct either. Since the gases are under a very low gravitational pressure, the centrifugal force of rotation must have formed quite a flat sun.
If planets and satellites were once molten masses, as cosmological theories assume, they would not have been able to obtain a spherical form, especially those which do not rotate, as Mercury or the moon (with respect to its primary).
DO YOU UNDERSTAND these things knowledge?
You have lost each and every debate so far because of your lack of knowledge.
You assert that the Moon orbits the Earth based on an attractive gravity model.
Here is another brief demonstration that the gases in the upper atmosphere do not obey any kind of an attractive gravity law.
The ingredients of the air—oxygen, nitrogen, argon and other gases—though not in a compound but in a mixture, are found in equal proportions at various levels of the atmosphere despite great differences in specific weights. The explanation accepted in science is this: “Swift winds keep the gases thoroughly mixed, so that except for water-vapor the composition of the atmosphere is the same throughout the troposphere to a high degree of approximation.” This explanation cannot be true. If it were true, then the moment the wind subsides, the nitrogen should stream upward, and the oxygen should drop, preceded by the argon. If winds are caused by a difference in weight between warm and cold air, the difference in weight between heavy gases high in the atmosphere and light gases at the lower levels should create storms, which would subside only after they had carried each gas to its natural place in accordance with its gravity or specific weight. But nothing of the kind happens.
When some aviators expressed the belief that “pockets of noxious gas” are in the air, the scientists replied:
“There are no ‘pockets of noxious gas.’ No single gas, and no other likely mixture of gases, has, at ordinary temperatures and pressures, the same density as atmospheric air. Therefore, a pocket of foreign gas in that atmosphere would almost certainly either bob up like a balloon, or sink like a stone in water.”
Why, then, do not the atmospheric gases separate and stay apart in accordance with the specific gravities?
Ozone, though heavier than oxygen, is absent in the lower layers of the atmosphere, is present in the upper layers, and is not subject to the “mixing effect of the wind.” The presence of ozone high in the atmosphere suggests that oxygen must be still higher: “As oxygen is less dense than ozone, it will tend to rise to even greater heights.” Nowhere is it asked why ozone does not descend of its own weight or at least why it is not mixed by the wind with other gases.
knowledge, do you understand what is being debated here? If the gases do not obey an attractive gravity law, HOW THEN could the Moon do so?
Have you ever asked yourself about the origin of the Moon? No?
Here the Moon paradoxes:
http://theflatearthsociety.net/talk/viewtopic.php?f=7&t=709#p31101The nebular and tidal theories alike regard the planets as derivatives of the sun, and the satellites as derivatives of the planets. The problem of the origin of the moon can be regarded as disturbing to the tidal theory. Being smaller than the earth, the moon completed earlier the process of cooling and shrinking, and the lunar volcanoes had already ceased to be active. It is calculated that the moon possesses a lighter specific weight than the earth. It is assumed that the moon was produced from the superficial layers of the earth's body, which are rich in light silicon, whereas the core of the earth, the main portion of its body, is made of heavy metals, particularly iron. But this assumption postulates the origin of the moon as not simultaneous with the origin of the earth; the earth, being formed out of a mass ejected from the sun, had to undergo a process of leveling, which placed the heavy metals in the core and silicon at the periphery, before the moon parted from the earth by a new tidal distortion. This would mean two consecutive tidal distortions in a system where the chance of even one is held extremely rare. If the passing of one star near another happens among one hundred million stars once in five billion years, two occurrences like this for one and the same star seem quite incredible.
The birth of smaller, solid planets out of the larger, gaseous ones is conjectured in order to explain the difference in the relation of weight to volume in the larger and smaller planets; but this theory is unable to explain the difference in the specific weights of the smaller planets and their satellites. By a process of cleavage, the moon was born of the earth; but since the specific weight of the moon is greater than that of the larger planets and smaller than that of the earth, it would seem to be more in accord with the theory that the earth was born of the moon, despite its smallness.
I have just demonstrated to you knowledge, that you have a very weak understanding of the actual physics of the heliocentric planetary system.
And we haven't entered into the FAINT YOUNG SUN PARADOX discussion, which would destroy immediately any and all preconceived ideas you might have about the origin of the planets.
By the way, you should remember that in the real/alternative flat earth theory, the Moon does rise and set at regular times; and it might not be visible during the few minutes the Black Sun covers entirely the Sun in Antarctica; very easy to explain...